McFadden, D. L. & McPhail, A. T. (1975). J. Chem. Soc. Dalton, 20, 1993–1998.

- RASTON, C. L. & WHITE, A. H. (1976). Aust. J. Chem. 29, 739-742.
- THEVENET, G., TOFFOLI, P., CÉOLIN, R. & RODIER, N. (1976). C. R. Acad. Sci. Paris, Sér. C, 283, 671-673.
- VAN MEERSSCHE, M. & FÉNEAU-DUPONT, J. (1973). Introduction à la Cristallographie et à la Chimie Structurale. Louvain: Vander.
- WATSON, W. H., WILLIAMS, R. J. & STEMPLE, N. R. (1972). J. Inorg. Nucl. Chem. **34**, 501–508.

Acta Cryst. (1977). B33, 2529-2533

Structure Cristalline de l'Hexamétaphosphate de Chrome: Cr₂P₆O₁₈

PAR M. BAGIEU-BEUCHER ET J. C. GUITEL

Laboratoire de Cristallographie, CNRS, 166 X, 38042 Grenoble Cédex, France

(Reçu le 21 janvier 1977, accepté le 7 février 1977)

Chromium hexametaphosphate is monoclinic, $P2_1/a$, with a = 8.311 (4), b = 15.221 (8), c = 6.220 (3) Å, $\beta = 105.85$ (5)° and Z = 2. The crystal structure has been solved from 935 independent reflexions collected with an automatic diffractometer (Mo $K\beta$ radiation). The final R value is 0.046. The P_6O_{18} ring anion is centrosymmetric with a pseudo mirror plane. These rings are interconnected by CrO_6 octahedra with a mean Cr-O distance of 1.965 Å. CrO_6 octahedra do not share O atoms. The shortest Cr-Cr distance is 5.05 Å.

Introduction

Les cristaux de Cr₂P₆O₁₈ ont été obtenus pour la première fois par Rémy & Boullé (1964, 1972) au cours d'une étude systématique des phosphates de chrome. Ces auteurs ont ainsi mis en évidence six variétés cristallines correspondant à la formule de base Cr(PO₃)₃. D'Yvoire (1962), en effectuant une étude analogue sur les sels d'aluminium et de fer isotypes, avait distingué ces différentes formes $M^{III}(PO_3)_3$ par les lettres A, B, C, D, E et F. Parmi ces composés, deux ont une structure connue. Il s'agit, d'une part du tétramétaphosphate cubique $Al_4(P_4O_{12})_3$, dite variété A, dont le modèle structural a été construit par Pauling & Sherman (1937); d'autre part, du polyphosphate $Al(PO_3)_3$, dite variété C, récemment établie par van der Meer (1976). De la variété E seules les caractéristiques cristallines de la maille hexagonale sont connues. Les variétés D et F, préparées seulement sous forme de poudres, n'ont pas fait l'objet d'une étude cristallographique approfondie.

L'analyse chromatographique réalisée sur les sels de fer isotypes avait révélé pour toutes les variétés sauf A des chaînes infinies d'anions phosphoriques. L'établissement de la structure cristalline de la forme $Cr(PO_3)_3 B$ a démenti en partie ces résultats, car il s'agit en fait de l'hexamétaphosphate de chrome $Cr_2P_6O_{18}$. Ce composé est le troisième exemple d'hexamétaphosphate, le premier étant le sel de sodium hexahydraté Na₆P₆O₁₈.6H₂O, étudié par Jost (1965), le second étant l'hexamétaphosphate de cuivre–lithium $Cu_2Li_2P_6O_{18}$, étudié par Laügt & Durif (1974).

Etude cristallochimique

Préparation de monocristaux de $Cr_2P_6O_{18}$

Des cristaux de qualité convenable pour une étude structurale ont été obtenus en chauffant, dans un creuset de platine, un mélange d'oxyde Cr_2O_3 et d'acide H_3PO_4 en excès, dans la proportion molaire de 1 pour 13. La calcination à 450°C a conduit au bout de deux jours à la cristallisation de prismes trapus à section losangique dont les angles sont voisins de 60 et 120°.

Paramètres de maille

L'étude des cristaux par la méthode de Weissenberg montre que la maille élémentaire est monoclinique et que les réflexions observées obeissent aux règles du groupe d'espace $P2_1/a$.

Le diagramme de poudre, réalisé sur chambre à focalisation à la longueur d'onde du fer, a permis d'affiner les paramètres de maille, le silicium étant utilisé comme étalon. Nous avons procédé de la même façon pour déterminer la maille du polyphosphate $Cr(PO_3)_3 C$. Les résultats sont donnés dans le Tableau 1, qui rassemble les caractéristiques cristallines des

Tableau 1. Caractéristiques cristallines des méta- et polyphosphates de chrome

Unité formulaire	Groupe d'espace	a (Å)	b (Å)	c (Å)	β(°)	Ζ	V_{M} (Å ³)	$D_{\chi}(\text{g cm}^{-3})$
$Cr_4(P_4O_{12})_2$	IÂ3d	13,912	13,912	13,912	90	4	673,2	2,85
Cr,P ₆ O ₁₈	$P2_1/a$	8,311	15,221	6,220	105,85	2	378,4	2,54
$Cr(PO_3), C$	Ic [*] Cc†	10,525 13.050	19,00	9,349	98,12 127,09	12	154,1	3,12
$Cr(PO_3)_3 E$	Hexagonal	11,017	9,381	11,017	120	6	164,3	2,92

* Description dans laquelle est décrite la structure de $Al(PO_3)$, C.

⁺ Description conforme aux International Tables for X-ray Crystallography (1952).

h k l	d_{obs}	d_{cal}	I _{obs}	h k l	$d_{\rm obs}$	$d_{\rm cal}$	I _{obs}
020	7,60	7,61	18	1 2 Ž	2,865	2,865	7
110	7,08	7,08	10	150	2,844	2,845)	10
001	5,97	5,98	21	141	2,839	2,839	10
011	5,57	5,57	74	$20\bar{2}$	2 707	2,788)	-
120	5,52	5,51	63	0 2 2	2,787	2,784)	3
11Ī	5,24	5,24	22	221	_	2,767	
021		4,70		240	2,755	2,756	2
121	4,50	4,50	10	2 I Ž	2,742	2,742	1
130	_	4,28	—	051	, 	2,713)	2
111	4,10	4,11	5	2 4 Ī	2,703	2,704	3
200	4,00	4,00	4	311	2,685	2,684)	10
031)	2.07	207		15 Ī	2.671	2.672	10
2 1 0	3.87	3.87	25	132	2,642	2.641)	
20Î	3.85	3,84		310	2.626	2.625	14
040	3,81	3,81	100	2 2 Ž		2.618)	
13Î	3,75	3,75)		032	2,577	2,577)	
2 1 Î)	2 7 2	3,73	17	321	2.545	2.567	8
121	3.12	3,72)		2 3 1	2,565	2,563	
220	3,54	3,54	22	112	2,543	2,544)	0
140)	2 4 2	3,44)		060	2,538	2.537	9
22Ī)	3,43	3,43	11	320	2,517	2.515	3
131	3,26	3,26	3	151		2.478	
041		3.21	_	1 2 2)	a a	- · · · ·)	
14Ī)	2.14	2.14	2	$2\bar{3}\bar{2}$	2,443	2,444}	4
230	3,14	3,14}	3	2 5 0	_	2.422)	
23Ī		3,06	_	160	2.418	2.418	19
112		3,03	_	331	2,002	2.402)	
002		2,992		142	2,402	2.400	I
201	2,972	2,970	1	2 5 Ī	2.387	2.386	5
012	2,934	2,936)	17			,	-
211	2,914	2,915)	17				

Tableau 2. Dépouillement du diagramme de poudre de Cr₂P₆O₁₈

quatre formes connues de $Cr(PO_3)_3$. Il est à noter que les sels d'aluminium $Al(PO_3)_3$ et de fer $Fe(PO_3)_3$ possèdent le même polymorphisme. Le Tableau 2 donne le dépouillement d'un diffractogramme de $Cr_2P_6O_{18}$, effectué à vitesse lente, avec la longueur d'onde du cuivre.

Evolution thermique

L'hexamétaphosphate de chrome est parfaitement stable jusqu'à 1000°C. Maintenu à 1100°C pendant quelques heures, le cycle $(P_6O_{18})^{6-}$ s'ouvre pour former des chaînes infinies de polyphosphate $(PO_3)^-$ appartenant à la variété C.

L'action de la pression est analogue à celle de la température:

$$\operatorname{Cr}_{2}\operatorname{P}_{6}\operatorname{O}_{18} \xrightarrow[40 \text{ kbar}, 800 \,^{\circ}\mathrm{C}]{} 2\operatorname{Cr}(\operatorname{PO}_{3})_{3} C.$$

La variation de densité entre les deux types de structure est de l'ordre de 20%. Elle correspond à la

plus grande augmentation de densité parmi les transformations possibles entre les quatre variétés.

Tableau	l	3.	Coordon	nées	des	positi	ons	atom	iques
(×10 ⁴)	et	СС	<i>pefficients</i>	de	tempé	rature	isotı	ropes	dans
				Cr_2	P_6O_{18}				

Les écarts standard sont donnés entre parenthèses.

B (Å²) Ζ х y 1,09 Cr 3764(1) 1371 (1) 1189 (2) P(1) 1611 (1) 2065 (3) 0,93 162(2) P(2) 2918 (2) 1128 (1) 5885 (3) 1,00 -443(1)8499 (3) 0,96 P(3) 2787 (2) O(L12) 1129 (6) 1519 (3) 4648 (8) 1,69 O(L13) -945 (6) 745 (3) 1623 (9) 1,68 6309 (8) O(L23) 2465 (6) 143 (3) 1,75 O(E11)-931(6)2377 (3) 1830 (8) 1,34 O(E12) 1332 (5) 1533 (3) 665 (8) 1,26 8030 (8) 3547 (6) 1599 (3) O(E21) 1,37 3994 (6) 1125 (3) 4340 (8) O(E22) 1,33 3380 (6) 104 (3) 519 (8) O(E31) 1,37 O(E32) 3796 (6) -1213(3)8261 (8) 1.22

Tableau 4. Grandeurs et directions des axes principaux des ellipsoïdes thermiques

 u_i correspond à la grandeur du *i*ème axe principal. θ_{ia} , θ_{ib} , θ_{ic} sont les angles entre le *i*ème axe et les axes cristallographiques.

	i	u _i	θ_{ia}	θ_{ib}	θ_{ic}
Cr	1	0,122 Å	97°	17°	74°
	2	0,122	63	100	44
	3	0,108	28	77	129
P(1)	1	0,123	93	78	17
. ,	2	0,106	123	36	92
	3	0,094	33	57	107
P(2)	1	0,125	94	8	82
. ,	2	0,109	19	89	87
	3	0,102	108	98	8
P(3)	1	0,121	79	89	27
	2	0,117	29	117	113
	3	0,091	63	27	103
O(L12)	1	0,177	58	39	80
	2	0,144	44	129	85
	3	0,111	116	95	12
O(L13)	1	0,190	81	100	27
	2	0,135	27	64	108
	3	0,098	115	28	71
O(L23)	1	0,176	20	109	110
	2	0,135	76	64	40
	3	0,131	76	33	122
O(E11)	1	0,145	19	77	93
	2	0,139	103	91	3
	3	0,104	103	13	89
O(E12)	1	0,157	94	12	78
	2	0,112	88	101	21
	3	0,104	4	86	107
O(E21)	1	0,157	35	96	71
	2	0,137	102	30	61
	3	0,093	123	119	36
O(E22)	1	0,151	83	28	66
	2	0,128	165	90	59
	3	0,107	76	118	41
O(E31)	1	0,158	50	88	56
	2	0,140	135	67	40
	3	0,087	74	23	110
O(E32)	1	0,145	94	121	33
	2	0,120	19	108	111
	3	0,105	72	37	66

Détermination de la structure

Données expérimentales

Les intensités ont été collectées à l'aide d'un diffractomètre Philips PW 1100 utilisant la longueur d'onde $K\beta$ du molybdène. Les 935 mesures ont été effectuées jusqu'à un angle θ maximum de 22°. Chaque réflexion a été mesurée par balayage ω d'un domaine angulaire de 1,40° (θ) à une vitesse de 0,03° s⁻¹. A chaque extrémité du domaine de mesure, le fond continu a été évalué pendant 5 s.

Le cristal utilisé avait pour dimensions: 0,08 mm comme épaisseur, 0,19 × 0,16 mm pour les diagonales de la section losangique. La valeur de μR n'excédant pas 0,2 selon la dimension maximale, la correction d'absorption a été négligée.

Les paramètres de maille utilisés pour l'établissement de la structure ont été affinés à partir de données du diffractomètre automatique et ont les valeurs données dans le résumé.

Détermination de la structure

L'examen des sections de Patterson a révélé les positions de l'atome de chrome et de deux atomes de phosphore indépendants. Une synthèse de Fourier calculée à partir des contributions de ces trois atomes a fait apparaître le troisième phosphore. A ce stade, nous avons pu identifier le corps de la structure constituée non pas comme prévu par des chaînes de tétraèdres PO_4 , mais par des cycles de six tétraèdres centrés autour des centres de symétrie de la maille. A partir de ce modèle structural, les coordonnées des atomes d'oxygène ont été facilement trouvées sur la synthèse de Fourier.

L'affinement des paramètres atomiques et des facteurs de température a été effectué selon une méthode de moindres carrés à matrice complète, programmée par Prewitt (1966). La valeur de R obtenue après quatre cycles d'affinement est de 0,059 avec des facteurs de température isotropes, 0,046 avec des facteurs de température anisotropes.

Les coordonnées cristallographiques des atomes et leurs facteurs d'agitation thermique isotropes sont données dans le Tableau 3. Les ellipsoïdes de vibration thermique sont définis dans le Tableau 4.*

^{*} Les listes des facteurs de structure et des facteurs d'agitation thermique anisotrope ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 32511: 9 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre.

Description de la structure

L'anion hexamétaphosphorique

Le cycle P_6O_{18} est centrosymétrique et possède en outre un pseudo-miroir perpendiculaire au plan moyen des atomes de phosphore et passant par les oxygènes de liaison O(L13): c'est-à-dire le plan diagonal (110) pour le cycle centré à l'origine. L'hexamétaphosphate de cuivre-lithium présente également une pseudo-symétrie 2/m bien qu'il n'ait pas d'élément de symétrie. Le cycle du sel de sodium rassemble lui tous les éléments 2/m. Le plan moyen du cycle de $Cr_2P_6O_{18}$ fait un angle de 57, 52 et 67° respectivement avec les plans *bc*, *ca* et *ab*. C'est dans ce dernier plan qu'est projetée la structure sur la Fig. 1.

Les deux cycles de la maille se déduisent l'un de l'autre par l'opération de symétrie du miroir de glissement. Leurs centres sont situés aux noeuds d'une maille pseudo-hexagonale de côté 8,5 Å dans le plan $(0,0,\frac{1}{2})$. La morphologie du cristal met d'ailleurs en évidence cette pseudo-symétrie hexagonale: b correspondant à la grande diagonale et a à la petite diagonale de la section losangique, les faces du prisme sont du type (110) et (001). Un arrangement analogue des cycles peut être observé dans les deux autres hexamétaphosphates. Dans Na₆P₆O₁₈.6H₂O, les cycles sont répartis dans des couches parallèles à (001), séparées de 5,25 Å et sont disposées comme dans un empilement hexagonal compact, a étant de l'ordre de 11 Å. Dans Cu₂Li₂P₆O₁₈, les couches se superposent parallèlement à (110) et sont distantes de 5,4 Å avec a de la maille pseudo-hexagonale égale à 9 Å environ. Les plans

moyens des cycles sont plus rapprochés dans $Cr_2P_6O_{18}$ puisque 4,6 Å seulement les séparent.

Les caractéristiques du cycle de l'hexamétaphosphate de chrome, rassemblées dans le Tableau 5, correspondent à celles trouvées pour des anions phosphoriques déjà étudiés. Les valeurs moyennes des distances P-O et des angles O-P-O peuvent être comparées dans le Tableau 6 pour les trois anions

Tableau 5. Distances interatomiques et angles des liaisons dans un cycle P₆O₁₈

Les distances P–O (Å) sont soulignées, les angles O–P–O (°) sont inscrits dans les triangles supérieurs, les distances O–O (Å) dans les triangles inférieurs. Les écarts standard sont de 0,005 Å pour P–O, 0,3° pour O–P–O et 0,007 Å pour O–O.

P(1)	O(E11)	O(L12)	O(L13)	O(E12)
O(E11)	1,462	107,4	109.3	119.8
O(L12)	2,465	1,594	102.1	110.8
O(L13)	2,489	2,475	1,588	106.0
O(E12)	2,542	2,529	2,448	1,477
P(2)	O(E21)	O(L12)	O(L23)	O(E22)
O(E21)	1,480	107,9	110,5	117,4
O(L12)	2,484	1,592	101,6	109,7
O(L23)	2,519	2,463	1,585	108,5
O(E22)	2,530	2,514	2,491	1,481
P(3)	O(E31)	O(L13)	O(L23)	O(E32)
O(E31)	1,476	107,4	110,6	117,9
O(L13)	2,464	1,581	100,9	109,6
O(L23)	2,521	2,444	1,589	109,1
O(E32)	2,527	2,495	2,496	1,472
P(1)-P(2)	2,909 (2)	P(1) - O(L)	.12)-P(2)	131.9 (4)
P(1) - P(3)	2,970 (3)	P(1) - O(L	(13) - P(3)	139,2 (4)
P(2) - P(3)	2,911 (3)	P(2) - O(L)	.23)-P(3)	133,0 (4)

Fig. 1. Projection de la structure de $\operatorname{Cr}_2 \operatorname{P}_6 \operatorname{O}_{18}$ selon c. Les oxygènes O(E21) et O(E31) des octaèdres CrO_6 appartiennent à la maille: -1 < z < 0 pour $0 < y < \frac{1}{2}, 1 < z < 2$ pour $\frac{1}{2} < y < 1$.

Hexamétaphosphate	Groupe d'espace	Symétrie du cycle	P-O(L)	P-O(E)	O(L)-P-O(L)	O(E)-P-O(E)
$Na_{6}P_{6}O_{18}.6H_{2}O$	Ccma	2/ <i>m</i>	1,613 A	1,471 Å	99,2°	120,7°
$Cu_2Li_2P_6O_{18}$	РĪ	Pseudo- symétrie 2/m	1,587	1,485	99,2	118,3
$Cr_2P_6O_{18}$	$P2_1/a$	l et pseudo- symétrie 2/m	1,588	1,475	101,5	118,4

Tableau 6. Principales caractéristiques géométriques des anions (P₆O₁₈) connus

	Tableau 7.	<i>Caractéristiques</i>	géométriques de	l'octaèdre CrO.
--	------------	-------------------------	-----------------	-----------------

Les distances Cr–O (Å) sont soulignées, les angles O–Cr–O (°) sont indiqués dans le triangle supérieur, les distances O–O (Å) dans le triangle inférieur. Les écarts standard sont de 0,005 Å pour Cr–O, 0,2° pour O–Cr–O et 0,007 Å pour O–O.

Cr	O(E11)	O(<i>E</i> 12)	O(E21)	O(<i>E</i> 22)	O(E31)	O(E32)
O(E11)	1,949	88,9	90,2	90,6	178,3	90,8
O(E12)	2,748	1,974	90,2	90,2	89,3	179,5
O(E21)	2,765	2,783	1,955	179,1	89,8	90,2
O(E22)	2,775	2,783	3,908	1,954	89,4	89,4
O(E31)	3,930	2,780	2,778	2,768	1,982	91.0
O(E32)	2,796	3,952	2,786	2,764	2,823	1,978

 $(P_6O_{18})^{6-}$ connus. Les valeurs données pour le sel de sodium ont été affinées par McAdam, Jost & Beagley (1972).

Environnement du chrome

Le chrome possède un environnement octaédrique d'oxygène, constitué par tous les oxygène extérieurs aux cycles. La configuration électronique du cation Cr^{3+} (couche de valence en $s^2p^6d^3$) laisse prévoir un octaèdre CrO_6 régulier. Le Tableau 7 confirme ce résultat théorique: les distances Cr-O varient de 1,95 à 1,98 Å, les arêtes O-O de 2,75 à 2,82 Å.

Contrairement aux cas des deux autres hexamétaphosphates, les polyèdres de coordination n'ont aucun sommet commun. Ils sont isolés les uns des autres par les arêtes des tétraèdres: $[P(1)O_4]$ le long des miroirs de glissement suivant **a**, $[P(2)O_4]$ selon **c** et $[P(3)O_4]$ entre les octaèdres centrosymétriques autour de $(\frac{1}{2},0,0)$ et $(0,\frac{1}{2},0)$ d'une part, $(\frac{1}{2},0,\frac{1}{2})$ et $(0,\frac{1}{2},\frac{1}{2})$ d'autre part.

Chaque octaèdre CrO_6 relie quatre cycles $(P_6O_{18})^{6-}$ entre eux. Trois des phosphores assurant les liaisons sont à peu près dans le même plan que le chrome, les trois autres se répartissent au-dessous et au-dessus dans un plan perpendiculaire. Les distances Cr-P correspondantes sont comprises entre 3,15 et 3,28 Å.

Les distances entre cations Cr^{3+} les plus proches sont 5,052 (2) Å (centrosymétriques) et 5,394 Å (miroir *a*).

La transformation de l'hexamétaphosphate $Cr_2P_6O_{18}$ en polyphosphate $Cr(PO_3)_3$ entraîne une réorganisation complète de l'anion: les cycles de six tétraèdres deviennent des chaînes de période six tétraèdres. Le type d'environnement reste le même pour le chrome. On retrouve aussi l'enchaînement d'octaèdres et de tétraèdres alternés dans certaines directions. Néanmoins, les atomes d'oxygène s'empilent de façon beaucoup plus compacte dans l'espace, puisque l'augmentation de densité d'une phase à l'autre atteint 20%: elle est double de celle obtenue dans la transformation des cycles de Cu₂Li₂P₆O₁₈ en chaînes de CuLi(PO₃)₃ (Laügt, Tordjman, Guitel & Roudaut, 1972). La différence provient essentiellement de l'environnement des cations dans les deux hexamétaphosphates.

Références

- International Tables for X-ray Crystallography (1952). Vol. I. Birmingham: Kynoch Press.
- Jost, K. H. (1965). Acta Cryst. 19, 555-560.
- LAÜGT, M. & DURIF, A. (1974). Acta Cryst. B30, 2118-2121.
- LAÜGT, M., TORDJMAN, I., GUITEL, J. C. & ROUDAUT, M. (1972). Acta Cryst. B28, 2352–2358.
- MCADAM, A., JOST, K. H. & BEAGLEY, B. (1972). Acta Cryst. B 28, 2740-2743.
- MEER, H. VAN DER (1976). Acta Cryst. B32, 2423-2426.
- PAULING, L. & SHERMAN, J. (1937). Z. Kristallogr. 96, 481– 487.
- PREWITT, C. T. (1966). SFLS-5. Report ORNL-TM-305. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Réму, P. & Boullé, A. (1964). C. R. Acad. Sci. Paris, 258, 927–929.
- Réмy, P. & Boullé, A. (1972). Bull. Soc. Chim. Fr. pp. 2213-2221.
- D'YVOIRE, F. (1962). Bull. Soc. Chim. Fr. pp. 1237-1243.